Forecasting the Unpredictable

Application of Quantitative Risk Analysis (QRA) to Risk Management in the International Space Station (ISS) Program

Project Management Challenge 2009

February 24-25

Daytona Beach, FL

Impetus

- Late '90s found ISS Program realizing a series of budget 'underruns' due largely to work slippage tied to the delay in launch of the principal Russian element
- A stretching schedule meant a rise in cost risk level, heightening uncertainty regarding rate at which risks might impact budget reserves
- Faced with the most technically challenging portion of assembly to-date, the ISS management team added many high-valuation risks to threats list
- Seeming underruns suddenly turned into high-profile projections of overruns!

Situation

- Simple 2-tier risk classification system in place 'liens' & 'threats'
- Formation of ISS Assessments Office (since grown to Assessments, Cost Estimates & Schedules ACES)

Challenge

• Devise means of objectively assessing likely threats impact to reserves

Background

Initial approach

- 2-tiered risk classification system replaced with 3-tiered threat levels
 - Level 1 greater than 50% likelihood of occurrence with impact to reserves
 - Level 2 approximately even chance of occurrence
 - Level 3 less than 50% likelihood of impact to reserves
- Potential threat valuation, cost phasing estimated by submitting organization
- Still lacked objective means of assessing potential impacts to reserves how much of a several-\$100M list of threats would materialize?
 - · Subjective consensus was that threats were inflated & front-loaded
 - Experience was that relatively smaller subset of listed threats resulted in cost impacts

Refined approach

- Develop QRA-based threat realization projection process
 - Monte Carlo based analysis
 - @Risk™ platform
- Contracted Futron® to develop QRA capability
 - Toolset
 - Models
 - Process

The cost & realization likelihood dimensions

 K-factors – normalized cost triangular distributions – were developed by Futron, based on data from 347 completed NASA projects/programs

Management 0.80 / 1.04 / 1.27
 Process 0.83 / 1.07 / 1.32
 Design / dev. 1.02 / 1.26 / 2.00

• Probabilistic factors tied to threat level were also implemented by Futron, based on the concept of dividing the probability spectrum into thirds

Level 3 threat
 Level 2 threat
 Level 1 threat
 0.00 / 0.17 / 0.33
 0.33 / 0.50 / 0.67
 0.67 / 0.83 / 1.00

The combined process

 QRA tool, built around @Risk™, was designed to perform a Monte Carlo assessment based on listed \$ value x K-factor distribution x level distribution or:

estimated mitigation cost x likely cost performance x likelihood of occurrence

- Correlates with standard impact v. likelihood risk matrix
- Monte Carlo output is S-curve; 80th %ile value is used

Original QRA

Initial results

- Current-year projection of threat realization / impact to reserves improved, but...
 - · Out-year threat projections remained unrealistically high
 - Projections in all years exhibited unrealistically volatile behavior from control board to control board, as items were added / deleted, often for non-technical reasons
- Prompted idea of 'tuning' QRA realization probability distributions to reflect actual ISS Program history

The search for a pattern

PRAB = Program
Risk
Advisory
Board

Original QRA

Trending threat list data...

- 'Liens' & Level 1s v.
- 'Threats' & Level 2s + Level 3s

Tracking threat realization...

- 'Known unknowns'
- Actual impacts to Program budget reserves only
- Historic data unavailable at the time to do same for 'unknown unknowns'

Observations

- % of listed threat values (all levels) realized in the year of execution held steady at 20%, despite significant shift in risk management between FY01 & FY02
- Current-year commitment of out-year reserves for risk mitigation totaled 7%
 - Trailed off as the right half of a Gaussian distribution
 - When added to the 20% current-year impact to reserves totaled 27%, remarkably close to management team's anecdotal '30 cents on the dollar' rule of thumb for realized threat-related impacts to reserves

The hypothesis

Testing the hypothesis

- Based on the observed trends in threat realization, an empirical formulation was derived to transform raw threats list data into a projection of actual impacts to reserves – the Historic Projection Methodology (HPM)
- Applies 20%
 factor to
 mean of
 given year's
 history of
 threats list
 valuations
 for level 1
 & levels 2, 3
 (current year)
- 27% factor applied to full threats list's mean value for out-year projection

 Test case (FY02) to within 8% of eventual actual data, two years in advance

Tuning the threat realization probability distributions

- Initial Futron distributions divided probability spectrum into thirds, one per level
- Data indicated preponderance of realized threats to be Level 1s
- Split Level 1
 threats into
 current-year
 & out-year
 categories
- Built in a 20%
 margin of
 conservatism
 for current year Level 1s
- Assumed symmetric distributions
- In simplified case at right, tuned

QRA projects \$8.7M current-year / \$6.5M out-year impact on \$30M/year threats, v. untuned \$15M/year

Process modifications

- Creation of Level 0 category pass-through threats
 - Certain to occur
 - Reasonably known cost impact
 - Inclusion in Monte Carlo analysis would render its results statistically invalid
- Maintenance & reporting of running average of QRA point estimates
 - In keeping with lessons-learned with HPM & study that preceded it
 - · Smoothed out artificial volatility of threats list
- Provision for annual tuning of QRA
- Reporting of QRA as a to-go value by subtracting out reserve impacts due to threats (RITs)
- Incorporation of current-year elliptic tail-off (to-go) factor
 - Takes QRA prediction to zero at end of year of execution
 - Accounts for inability to cost funds to mitigate threats realized late in fiscal year

Other Improvements

Usage & overall predictive accuracy

- QRA projections are integral to several program control assessments, including fiscal year expenditure forecasts & cost containment analyses
- With annual tuning, QRA forecasts continue to be reasonably accurate
- In representative example given at the right, QRA prediction is modestly conservative at start of fiscal year (~30%), & converges smoothly to eventual actuals

Summary

- Tying estimates of cost impacts to identified threats & adding quantitative analysis to the risk assessment process have boosted forecasting accuracy
- As a result, QRA is now integral to successful program control in the ISS Program

Results

Recent trends & developments

- Last two fiscal years have shown steady shift in threat realization trends
 - · Current-year impacts to reserves down; balanced by increased activity in prior years
 - · New trends in keeping with Program's continued transition into operations phase
- Prompted new look at threats realization history
 - · Several more years of actual impacts data
 - Looking to predict not only overall impact to reserves, but sources (i.e., level & type of threat) as well
- Product of ongoing assessment will not only address level-related tuning, but will for first time tune K-factors to ISS Program history

The future...?

- If a program's risk management system is designed from the outset to track the right data, an exciting possibility presents itself: predicting unknown unknowns
 - Total nondiscretionary reserve impacts threat-related impacts = unk.-unk. impacts
 - Characterization of unk.-unk. impacts likely to take form of a Cost Est. Relationship
- If enough programs of similar class do this (e.g., large aerospace development), general CER(s) can be developed for use by new programs

Epilogue